MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. N07752 Nickel

C96400 copper-nickel belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 25
22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
73
Tensile Strength: Ultimate (UTS), MPa 490
1120
Tensile Strength: Yield (Proof), MPa 260
740

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 260
960
Melting Completion (Liquidus), °C 1240
1380
Melting Onset (Solidus), °C 1170
1330
Specific Heat Capacity, J/kg-K 400
460
Thermal Conductivity, W/m-K 28
13
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 45
60
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 5.9
10
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 280
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
220
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1450
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15
37
Strength to Weight: Bending, points 16
29
Thermal Diffusivity, mm2/s 7.8
3.2
Thermal Shock Resistance, points 17
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0 to 0.15
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 62.3 to 71.3
0 to 0.5
Iron (Fe), % 0.25 to 1.5
5.0 to 9.0
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 28 to 32
70 to 77.1
Niobium (Nb), % 0.5 to 1.5
0.7 to 1.2
Phosphorus (P), % 0 to 0.020
0 to 0.0080
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.0030
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 0.5
0