MakeItFrom.com
Menu (ESC)

C96600 Copper vs. ACI-ASTM CK20 Steel

C96600 copper belongs to the copper alloys classification, while ACI-ASTM CK20 steel belongs to the iron alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is ACI-ASTM CK20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 7.0
37
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
78
Tensile Strength: Ultimate (UTS), MPa 760
530
Tensile Strength: Yield (Proof), MPa 480
260

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 280
1100
Melting Completion (Liquidus), °C 1180
1400
Melting Onset (Solidus), °C 1100
1430
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
14
Thermal Expansion, µm/m-K 15
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 65
25
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 7.0
4.4
Embodied Energy, MJ/kg 100
62
Embodied Water, L/kg 280
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
160
Resilience: Unit (Modulus of Resilience), kJ/m3 830
170
Stiffness to Weight: Axial, points 8.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 8.4
3.7
Thermal Shock Resistance, points 25
13

Alloy Composition

Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 63.5 to 69.8
0
Iron (Fe), % 0.8 to 1.1
46.7 to 58
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 29 to 33
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0