MakeItFrom.com
Menu (ESC)

C96600 Copper vs. Nickel 333

C96600 copper belongs to the copper alloys classification, while nickel 333 belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
210
Elongation at Break, % 7.0
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
81
Tensile Strength: Ultimate (UTS), MPa 760
630
Tensile Strength: Yield (Proof), MPa 480
270

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 280
1010
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1100
1410
Specific Heat Capacity, J/kg-K 400
450
Thermal Conductivity, W/m-K 30
11
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 65
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 7.0
8.5
Embodied Energy, MJ/kg 100
120
Embodied Water, L/kg 280
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
170
Resilience: Unit (Modulus of Resilience), kJ/m3 830
180
Stiffness to Weight: Axial, points 8.7
14
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 8.4
2.9
Thermal Shock Resistance, points 25
16

Alloy Composition

Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 63.5 to 69.8
0
Iron (Fe), % 0.8 to 1.1
9.3 to 24.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 29 to 33
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.5 to 4.0
Residuals, % 0 to 0.5
0