MakeItFrom.com
Menu (ESC)

C96600 Copper vs. Titanium 6-6-2

C96600 copper belongs to the copper alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
120
Elongation at Break, % 7.0
6.7 to 9.0
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 52
44
Tensile Strength: Ultimate (UTS), MPa 760
1140 to 1370
Tensile Strength: Yield (Proof), MPa 480
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 240
400
Maximum Temperature: Mechanical, °C 280
310
Melting Completion (Liquidus), °C 1180
1610
Melting Onset (Solidus), °C 1100
1560
Specific Heat Capacity, J/kg-K 400
540
Thermal Conductivity, W/m-K 30
5.5
Thermal Expansion, µm/m-K 15
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 65
40
Density, g/cm3 8.9
4.8
Embodied Carbon, kg CO2/kg material 7.0
29
Embodied Energy, MJ/kg 100
470
Embodied Water, L/kg 280
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
89 to 99
Stiffness to Weight: Axial, points 8.7
13
Stiffness to Weight: Bending, points 20
34
Strength to Weight: Axial, points 24
66 to 79
Strength to Weight: Bending, points 21
50 to 57
Thermal Diffusivity, mm2/s 8.4
2.1
Thermal Shock Resistance, points 25
75 to 90

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.0 to 6.0
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 63.5 to 69.8
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.8 to 1.1
0.35 to 1.0
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 29 to 33
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0 to 0.5
0 to 0.4