MakeItFrom.com
Menu (ESC)

C96600 Copper vs. S15500 Stainless Steel

C96600 copper belongs to the copper alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C96600 copper and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 7.0
6.8 to 16
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
75
Tensile Strength: Ultimate (UTS), MPa 760
890 to 1490
Tensile Strength: Yield (Proof), MPa 480
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 280
820
Melting Completion (Liquidus), °C 1180
1430
Melting Onset (Solidus), °C 1100
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
17
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 65
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 7.0
2.7
Embodied Energy, MJ/kg 100
39
Embodied Water, L/kg 280
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 830
890 to 4460
Stiffness to Weight: Axial, points 8.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
32 to 53
Strength to Weight: Bending, points 21
26 to 37
Thermal Diffusivity, mm2/s 8.4
4.6
Thermal Shock Resistance, points 25
30 to 50

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 63.5 to 69.8
2.5 to 4.5
Iron (Fe), % 0.8 to 1.1
71.9 to 79.9
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 29 to 33
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0