MakeItFrom.com
Menu (ESC)

C96700 Copper vs. ACI-ASTM CG3M Steel

C96700 copper belongs to the copper alloys classification, while ACI-ASTM CG3M steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is ACI-ASTM CG3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
28
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
79
Tensile Strength: Ultimate (UTS), MPa 1210
580
Tensile Strength: Yield (Proof), MPa 550
270

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 310
1020
Melting Completion (Liquidus), °C 1170
1450
Melting Onset (Solidus), °C 1110
1400
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 15
16

Otherwise Unclassified Properties

Base Metal Price, % relative 90
20
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 9.5
4.1
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 280
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
190
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
20
Strength to Weight: Bending, points 29
20
Thermal Diffusivity, mm2/s 8.5
4.1
Thermal Shock Resistance, points 40
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
58.9 to 70
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 29 to 33
9.0 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0