MakeItFrom.com
Menu (ESC)

C96700 Copper vs. AISI 304Cu Stainless Steel

C96700 copper belongs to the copper alloys classification, while AISI 304Cu stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is AISI 304Cu stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
76
Tensile Strength: Ultimate (UTS), MPa 1210
530
Tensile Strength: Yield (Proof), MPa 550
210

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 310
930
Melting Completion (Liquidus), °C 1170
1410
Melting Onset (Solidus), °C 1110
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
13
Thermal Expansion, µm/m-K 15
16

Otherwise Unclassified Properties

Base Metal Price, % relative 90
16
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.5
3.0
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
110
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
19
Strength to Weight: Bending, points 29
19
Thermal Diffusivity, mm2/s 8.5
3.5
Thermal Shock Resistance, points 40
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 62.4 to 68.8
3.0 to 4.0
Iron (Fe), % 0.4 to 1.0
63.9 to 72
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Nickel (Ni), % 29 to 33
8.0 to 10
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0