MakeItFrom.com
Menu (ESC)

C96700 Copper vs. AISI 445 Stainless Steel

C96700 copper belongs to the copper alloys classification, while AISI 445 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is AISI 445 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
25
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
78
Tensile Strength: Ultimate (UTS), MPa 1210
480
Tensile Strength: Yield (Proof), MPa 550
230

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 310
950
Melting Completion (Liquidus), °C 1170
1440
Melting Onset (Solidus), °C 1110
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
21
Thermal Expansion, µm/m-K 15
11

Otherwise Unclassified Properties

Base Metal Price, % relative 90
12
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 9.5
2.6
Embodied Energy, MJ/kg 140
38
Embodied Water, L/kg 280
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
98
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
140
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 8.5
5.6
Thermal Shock Resistance, points 40
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 62.4 to 68.8
0.3 to 0.6
Iron (Fe), % 0.4 to 1.0
74.9 to 80.7
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Nickel (Ni), % 29 to 33
0 to 0.6
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.012
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0