MakeItFrom.com
Menu (ESC)

C96700 Copper vs. ASTM A372 Grade J Steel

C96700 copper belongs to the copper alloys classification, while ASTM A372 grade J steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is ASTM A372 grade J steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
17 to 22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 53
73
Tensile Strength: Ultimate (UTS), MPa 1210
650 to 1020
Tensile Strength: Yield (Proof), MPa 550
430 to 850

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 310
420
Melting Completion (Liquidus), °C 1170
1460
Melting Onset (Solidus), °C 1110
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
44
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 90
2.4
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.5
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 280
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
500 to 1930
Stiffness to Weight: Axial, points 8.9
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 38
23 to 36
Strength to Weight: Bending, points 29
21 to 29
Thermal Diffusivity, mm2/s 8.5
12
Thermal Shock Resistance, points 40
19 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0.35 to 0.5
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
96.7 to 97.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0.75 to 1.1
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 29 to 33
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.15
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0