MakeItFrom.com
Menu (ESC)

C96700 Copper vs. AWS E80C-B6

C96700 copper belongs to the copper alloys classification, while AWS E80C-B6 belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 53
74
Tensile Strength: Ultimate (UTS), MPa 1210
630
Tensile Strength: Yield (Proof), MPa 550
530

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Melting Completion (Liquidus), °C 1170
1450
Melting Onset (Solidus), °C 1110
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
39
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 90
4.7
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.5
1.8
Embodied Energy, MJ/kg 140
25
Embodied Water, L/kg 280
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
730
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 29
21
Thermal Diffusivity, mm2/s 8.5
11
Thermal Shock Resistance, points 40
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
4.5 to 6.0
Copper (Cu), % 62.4 to 68.8
0 to 0.35
Iron (Fe), % 0.4 to 1.0
90.1 to 94.4
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 29 to 33
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.15 to 0.35
0
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0 to 0.5