MakeItFrom.com
Menu (ESC)

C96700 Copper vs. EN 1.1122 Steel

C96700 copper belongs to the copper alloys classification, while EN 1.1122 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is EN 1.1122 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
12 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 53
73
Tensile Strength: Ultimate (UTS), MPa 1210
340 to 460
Tensile Strength: Yield (Proof), MPa 550
240 to 370

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1170
1460
Melting Onset (Solidus), °C 1110
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
51
Thermal Expansion, µm/m-K 15
12

Otherwise Unclassified Properties

Base Metal Price, % relative 90
1.8
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 9.5
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 280
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
36 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
160 to 360
Stiffness to Weight: Axial, points 8.9
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 38
12 to 16
Strength to Weight: Bending, points 29
14 to 17
Thermal Diffusivity, mm2/s 8.5
14
Thermal Shock Resistance, points 40
11 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0.080 to 0.12
Copper (Cu), % 62.4 to 68.8
0 to 0.25
Iron (Fe), % 0.4 to 1.0
98.7 to 99.62
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0.3 to 0.6
Nickel (Ni), % 29 to 33
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0