MakeItFrom.com
Menu (ESC)

C96700 Copper vs. EN 1.1133 Steel

C96700 copper belongs to the copper alloys classification, while EN 1.1133 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
19 to 24
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 53
73
Tensile Strength: Ultimate (UTS), MPa 1210
580 to 620
Tensile Strength: Yield (Proof), MPa 550
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1170
1460
Melting Onset (Solidus), °C 1110
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 30
49
Thermal Expansion, µm/m-K 15
12

Otherwise Unclassified Properties

Base Metal Price, % relative 90
2.1
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.5
1.5
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 280
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
270 to 550
Stiffness to Weight: Axial, points 8.9
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 38
21 to 22
Strength to Weight: Bending, points 29
20 to 21
Thermal Diffusivity, mm2/s 8.5
13
Thermal Shock Resistance, points 40
18 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
96.9 to 98.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 29 to 33
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0