MakeItFrom.com
Menu (ESC)

C96700 Copper vs. EN 1.4005 Stainless Steel

C96700 copper belongs to the copper alloys classification, while EN 1.4005 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is EN 1.4005 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 10
13 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
76
Tensile Strength: Ultimate (UTS), MPa 1210
630 to 750
Tensile Strength: Yield (Proof), MPa 550
370 to 500

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 310
760
Melting Completion (Liquidus), °C 1170
1440
Melting Onset (Solidus), °C 1110
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
30
Thermal Expansion, µm/m-K 15
10

Otherwise Unclassified Properties

Base Metal Price, % relative 90
7.0
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 9.5
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 280
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
350 to 650
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
23 to 27
Strength to Weight: Bending, points 29
21 to 24
Thermal Diffusivity, mm2/s 8.5
8.1
Thermal Shock Resistance, points 40
23 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0.060 to 0.15
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
82.4 to 87.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 29 to 33
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0