MakeItFrom.com
Menu (ESC)

C96700 Copper vs. S21603 Stainless Steel

C96700 copper belongs to the copper alloys classification, while S21603 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is S21603 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
79
Tensile Strength: Ultimate (UTS), MPa 1210
690
Tensile Strength: Yield (Proof), MPa 550
390

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 310
990
Melting Completion (Liquidus), °C 1170
1420
Melting Onset (Solidus), °C 1110
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 15
17

Otherwise Unclassified Properties

Base Metal Price, % relative 90
17
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 9.5
3.6
Embodied Energy, MJ/kg 140
50
Embodied Water, L/kg 280
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
270
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
380
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
25
Strength to Weight: Bending, points 29
22
Thermal Shock Resistance, points 40
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 22
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
57.6 to 67.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
7.5 to 9.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 29 to 33
5.0 to 7.0
Nitrogen (N), % 0
0.25 to 0.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0