MakeItFrom.com
Menu (ESC)

C96700 Copper vs. S32750 Stainless Steel

C96700 copper belongs to the copper alloys classification, while S32750 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
210
Elongation at Break, % 10
17
Poisson's Ratio 0.33
0.27
Rockwell C Hardness 26
28
Shear Modulus, GPa 53
81
Tensile Strength: Ultimate (UTS), MPa 1210
860
Tensile Strength: Yield (Proof), MPa 550
590

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1170
1450
Melting Onset (Solidus), °C 1110
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 15
12

Otherwise Unclassified Properties

Base Metal Price, % relative 90
21
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.5
4.1
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 280
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
860
Stiffness to Weight: Axial, points 8.9
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
31
Strength to Weight: Bending, points 29
26
Thermal Diffusivity, mm2/s 8.5
4.0
Thermal Shock Resistance, points 40
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 62.4 to 68.8
0 to 0.5
Iron (Fe), % 0.4 to 1.0
58.1 to 66.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.2
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 29 to 33
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.15 to 0.35
0
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0