MakeItFrom.com
Menu (ESC)

C96700 Copper vs. S43940 Stainless Steel

C96700 copper belongs to the copper alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C96700 copper and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 10
21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
77
Tensile Strength: Ultimate (UTS), MPa 1210
490
Tensile Strength: Yield (Proof), MPa 550
280

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 310
890
Melting Completion (Liquidus), °C 1170
1440
Melting Onset (Solidus), °C 1110
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 30
25
Thermal Expansion, µm/m-K 15
10

Otherwise Unclassified Properties

Base Metal Price, % relative 90
12
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 9.5
2.6
Embodied Energy, MJ/kg 140
38
Embodied Water, L/kg 280
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
86
Resilience: Unit (Modulus of Resilience), kJ/m3 1080
200
Stiffness to Weight: Axial, points 8.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 38
18
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 8.5
6.8
Thermal Shock Resistance, points 40
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 1.1 to 1.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 62.4 to 68.8
0
Iron (Fe), % 0.4 to 1.0
78.2 to 82.1
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Nickel (Ni), % 29 to 33
0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.15 to 0.35
0.1 to 0.6
Zirconium (Zr), % 0.15 to 0.35
0
Residuals, % 0 to 0.5
0