MakeItFrom.com
Menu (ESC)

C96800 Copper vs. AISI 302B Stainless Steel

C96800 copper belongs to the copper alloys classification, while AISI 302B stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96800 copper and the bottom bar is AISI 302B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.4
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 1010
580
Tensile Strength: Yield (Proof), MPa 860
230

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 220
930
Melting Completion (Liquidus), °C 1120
1400
Melting Onset (Solidus), °C 1060
1360
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 52
17
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
15
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 3.4
3.0
Embodied Energy, MJ/kg 52
43
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
210
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
140
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 32
21
Strength to Weight: Bending, points 25
20
Thermal Diffusivity, mm2/s 15
4.4
Thermal Shock Resistance, points 35
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 87.1 to 90.5
0
Iron (Fe), % 0 to 0.5
65.7 to 73
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0.050 to 0.3
0 to 2.0
Nickel (Ni), % 9.5 to 10.5
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.0050
0 to 0.045
Silicon (Si), % 0
2.0 to 3.0
Sulfur (S), % 0 to 0.0025
0 to 0.030
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0