MakeItFrom.com
Menu (ESC)

C96800 Copper vs. AISI 303 Stainless Steel

C96800 copper belongs to the copper alloys classification, while AISI 303 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96800 copper and the bottom bar is AISI 303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.4
40 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 1010
600 to 690
Tensile Strength: Yield (Proof), MPa 860
230 to 420

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
930
Melting Completion (Liquidus), °C 1120
1450
Melting Onset (Solidus), °C 1060
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 52
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
15
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.0
Embodied Energy, MJ/kg 52
42
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
240
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
140 to 440
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 32
21 to 25
Strength to Weight: Bending, points 25
20 to 22
Thermal Diffusivity, mm2/s 15
4.4
Thermal Shock Resistance, points 35
13 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 87.1 to 90.5
0
Iron (Fe), % 0 to 0.5
67.3 to 74.9
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0.050 to 0.3
0 to 2.0
Nickel (Ni), % 9.5 to 10.5
8.0 to 10
Phosphorus (P), % 0 to 0.0050
0 to 0.2
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.0025
0.15 to 0.35
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0