MakeItFrom.com
Menu (ESC)

C96800 Copper vs. AISI 316 Stainless Steel

C96800 copper belongs to the copper alloys classification, while AISI 316 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C96800 copper and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.4
8.0 to 55
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
78
Tensile Strength: Ultimate (UTS), MPa 1010
520 to 1180
Tensile Strength: Yield (Proof), MPa 860
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
590
Melting Completion (Liquidus), °C 1120
1400
Melting Onset (Solidus), °C 1060
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 52
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.4
3.9
Embodied Energy, MJ/kg 52
53
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
130 to 1820
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 32
18 to 41
Strength to Weight: Bending, points 25
18 to 31
Thermal Diffusivity, mm2/s 15
4.1
Thermal Shock Resistance, points 35
11 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 87.1 to 90.5
0
Iron (Fe), % 0 to 0.5
62 to 72
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0.050 to 0.3
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 9.5 to 10.5
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.0050
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0 to 0.0025
0 to 0.030
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0