MakeItFrom.com
Menu (ESC)

C96800 Copper vs. AISI 334 Stainless Steel

C96800 copper belongs to the copper alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C96800 copper and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.4
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 1010
540
Tensile Strength: Yield (Proof), MPa 860
190

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
1000
Melting Completion (Liquidus), °C 1120
1410
Melting Onset (Solidus), °C 1060
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Base Metal Price, % relative 34
22
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.4
4.1
Embodied Energy, MJ/kg 52
59
Embodied Water, L/kg 300
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
140
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
96
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 25
19
Thermal Shock Resistance, points 35
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0.15 to 0.6
Antimony (Sb), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 87.1 to 90.5
0
Iron (Fe), % 0 to 0.5
55.7 to 62.7
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.0
Nickel (Ni), % 9.5 to 10.5
19 to 21
Phosphorus (P), % 0 to 0.0050
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.0025
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0