MakeItFrom.com
Menu (ESC)

C96800 Copper vs. AWS E90C-B3

C96800 copper belongs to the copper alloys classification, while AWS E90C-B3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C96800 copper and the bottom bar is AWS E90C-B3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.4
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 1010
710
Tensile Strength: Yield (Proof), MPa 860
600

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Melting Completion (Liquidus), °C 1120
1460
Melting Onset (Solidus), °C 1060
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 52
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
4.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.8
Embodied Energy, MJ/kg 52
24
Embodied Water, L/kg 300
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
130
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
970
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 32
25
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 15
11
Thermal Shock Resistance, points 35
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Carbon (C), % 0
0.050 to 0.12
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 87.1 to 90.5
0 to 0.35
Iron (Fe), % 0 to 0.5
93.4 to 96.4
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0.050 to 0.3
0.4 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 9.5 to 10.5
0 to 0.2
Phosphorus (P), % 0 to 0.0050
0 to 0.025
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.0025
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0 to 0.5