MakeItFrom.com
Menu (ESC)

C96800 Copper vs. EN 1.4589 Stainless Steel

C96800 copper belongs to the copper alloys classification, while EN 1.4589 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96800 copper and the bottom bar is EN 1.4589 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.4
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 1010
650
Tensile Strength: Yield (Proof), MPa 860
440

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
810
Melting Completion (Liquidus), °C 1120
1450
Melting Onset (Solidus), °C 1060
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 52
25
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
2.4
Embodied Energy, MJ/kg 52
34
Embodied Water, L/kg 300
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
96
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
490
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 32
23
Strength to Weight: Bending, points 25
22
Thermal Diffusivity, mm2/s 15
6.7
Thermal Shock Resistance, points 35
23

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Copper (Cu), % 87.1 to 90.5
0
Iron (Fe), % 0 to 0.5
78.2 to 85
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 9.5 to 10.5
1.0 to 2.5
Phosphorus (P), % 0 to 0.0050
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.0025
0 to 0.015
Titanium (Ti), % 0
0.3 to 0.5
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0