MakeItFrom.com
Menu (ESC)

C96800 Copper vs. EN AC-51400 Aluminum

C96800 copper belongs to the copper alloys classification, while EN AC-51400 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C96800 copper and the bottom bar is EN AC-51400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
67
Elongation at Break, % 3.4
3.4
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 46
25
Tensile Strength: Ultimate (UTS), MPa 1010
190
Tensile Strength: Yield (Proof), MPa 860
120

Thermal Properties

Latent Heat of Fusion, J/g 220
400
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1120
640
Melting Onset (Solidus), °C 1060
600
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 52
110
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
31
Electrical Conductivity: Equal Weight (Specific), % IACS 10
110

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 3.4
9.1
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 300
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
110
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 32
20
Strength to Weight: Bending, points 25
28
Thermal Diffusivity, mm2/s 15
46
Thermal Shock Resistance, points 35
8.6

Alloy Composition

Aluminum (Al), % 0 to 0.1
90.5 to 95.5
Antimony (Sb), % 0 to 0.020
0
Copper (Cu), % 87.1 to 90.5
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.55
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 0.050 to 0.3
0 to 0.45
Nickel (Ni), % 9.5 to 10.5
0
Phosphorus (P), % 0 to 0.0050
0
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0 to 0.0025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 1.0
0 to 0.1
Residuals, % 0
0 to 0.15