MakeItFrom.com
Menu (ESC)

C96800 Copper vs. C18100 Copper

Both C96800 copper and C18100 copper are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C96800 copper and the bottom bar is C18100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 3.4
8.3
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 46
47
Tensile Strength: Ultimate (UTS), MPa 1010
510
Tensile Strength: Yield (Proof), MPa 860
460

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1120
1080
Melting Onset (Solidus), °C 1060
1020
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 52
320
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
80
Electrical Conductivity: Equal Weight (Specific), % IACS 10
81

Otherwise Unclassified Properties

Base Metal Price, % relative 34
31
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 52
43
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
40
Resilience: Unit (Modulus of Resilience), kJ/m3 3000
900
Stiffness to Weight: Axial, points 7.6
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 32
16
Strength to Weight: Bending, points 25
16
Thermal Diffusivity, mm2/s 15
94
Thermal Shock Resistance, points 35
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.020
0
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 87.1 to 90.5
98.7 to 99.49
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0
0.030 to 0.060
Manganese (Mn), % 0.050 to 0.3
0
Nickel (Ni), % 9.5 to 10.5
0
Phosphorus (P), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.0025
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0 to 0.5
0 to 0.5