MakeItFrom.com
Menu (ESC)

C96900 Copper-nickel vs. SAE-AISI 1108 Steel

C96900 copper-nickel belongs to the copper alloys classification, while SAE-AISI 1108 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96900 copper-nickel and the bottom bar is SAE-AISI 1108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.5
23 to 34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 850
380 to 440
Tensile Strength: Yield (Proof), MPa 830
220 to 360

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 960
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 39
1.8
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 4.6
1.4
Embodied Energy, MJ/kg 72
18
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
95 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 2820
130 to 340
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 27
13 to 16
Strength to Weight: Bending, points 23
15 to 16
Thermal Shock Resistance, points 30
12 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.080 to 0.13
Copper (Cu), % 73.6 to 78
0
Iron (Fe), % 0 to 0.5
98.9 to 99.24
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0.6 to 0.8
Nickel (Ni), % 14.5 to 15.5
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0
0.080 to 0.13
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0