MakeItFrom.com
Menu (ESC)

C96900 Copper-nickel vs. C61300 Bronze

Both C96900 copper-nickel and C61300 bronze are copper alloys. They have 77% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96900 copper-nickel and the bottom bar is C61300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 4.5
34 to 40
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
43
Tensile Strength: Ultimate (UTS), MPa 850
550 to 580
Tensile Strength: Yield (Proof), MPa 830
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 210
210
Melting Completion (Liquidus), °C 1060
1050
Melting Onset (Solidus), °C 960
1040
Specific Heat Capacity, J/kg-K 380
420
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
13

Otherwise Unclassified Properties

Base Metal Price, % relative 39
29
Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 4.6
3.0
Embodied Energy, MJ/kg 72
49
Embodied Water, L/kg 360
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 2820
230 to 410
Stiffness to Weight: Axial, points 7.7
7.5
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 27
18 to 19
Strength to Weight: Bending, points 23
18
Thermal Shock Resistance, points 30
19 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
6.0 to 7.5
Copper (Cu), % 73.6 to 78
88 to 91.8
Iron (Fe), % 0 to 0.5
2.0 to 3.0
Lead (Pb), % 0 to 0.020
0 to 0.010
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 0.2
Nickel (Ni), % 14.5 to 15.5
0 to 0.15
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.3
0 to 0.1
Tin (Sn), % 7.5 to 8.5
0.2 to 0.5
Zinc (Zn), % 0 to 0.5
0 to 0.2
Residuals, % 0 to 0.5
0 to 0.2