MakeItFrom.com
Menu (ESC)

C96900 Copper-nickel vs. R30075 Cobalt

C96900 copper-nickel belongs to the copper alloys classification, while R30075 cobalt belongs to the cobalt alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96900 copper-nickel and the bottom bar is R30075 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210 to 250
Elongation at Break, % 4.5
12
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
82 to 98
Tensile Strength: Ultimate (UTS), MPa 850
780 to 1280
Tensile Strength: Yield (Proof), MPa 830
480 to 840

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Melting Completion (Liquidus), °C 1060
1360
Melting Onset (Solidus), °C 960
1290
Specific Heat Capacity, J/kg-K 380
450
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.1

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 4.6
8.1
Embodied Energy, MJ/kg 72
110
Embodied Water, L/kg 360
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
84 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 2820
560 to 1410
Stiffness to Weight: Axial, points 7.7
14 to 17
Stiffness to Weight: Bending, points 19
24 to 25
Strength to Weight: Axial, points 27
26 to 42
Strength to Weight: Bending, points 23
22 to 31
Thermal Shock Resistance, points 30
21 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.35
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
58.7 to 68
Copper (Cu), % 73.6 to 78
0
Iron (Fe), % 0 to 0.5
0 to 0.75
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 14.5 to 15.5
0 to 0.5
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0