MakeItFrom.com
Menu (ESC)

C97600 Dairy Metal vs. SAE-AISI 1084 Steel

C97600 dairy metal belongs to the copper alloys classification, while SAE-AISI 1084 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C97600 dairy metal and the bottom bar is SAE-AISI 1084 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
11
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
72
Tensile Strength: Ultimate (UTS), MPa 310
780 to 930
Tensile Strength: Yield (Proof), MPa 140
510 to 600

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1140
1450
Melting Onset (Solidus), °C 1110
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 22
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.6
1.4
Embodied Energy, MJ/kg 69
19
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
81 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 85
700 to 960
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.8
28 to 33
Strength to Weight: Bending, points 12
24 to 27
Thermal Diffusivity, mm2/s 6.5
14
Thermal Shock Resistance, points 11
25 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.8 to 0.93
Copper (Cu), % 63 to 67
0
Iron (Fe), % 0 to 1.5
98.1 to 98.6
Lead (Pb), % 3.0 to 5.0
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 19 to 21.5
0
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0 to 0.080
0 to 0.050
Tin (Sn), % 3.5 to 4.0
0
Zinc (Zn), % 3.0 to 9.0
0
Residuals, % 0 to 0.3
0