MakeItFrom.com
Menu (ESC)

C97800 Nickel Silver vs. AISI 310MoLN Stainless Steel

C97800 nickel silver belongs to the copper alloys classification, while AISI 310MoLN stainless steel belongs to the iron alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C97800 nickel silver and the bottom bar is AISI 310MoLN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 10
28
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 48
80
Tensile Strength: Ultimate (UTS), MPa 370
610
Tensile Strength: Yield (Proof), MPa 170
290

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1180
1420
Melting Onset (Solidus), °C 1140
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 25
14
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 40
28
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 5.1
5.0
Embodied Energy, MJ/kg 76
70
Embodied Water, L/kg 330
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
140
Resilience: Unit (Modulus of Resilience), kJ/m3 120
200
Stiffness to Weight: Axial, points 8.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
21
Strength to Weight: Bending, points 13
20
Thermal Diffusivity, mm2/s 7.3
3.7
Thermal Shock Resistance, points 13
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 64 to 67
0
Iron (Fe), % 0 to 1.5
45.2 to 53.8
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.6 to 2.6
Nickel (Ni), % 24 to 27
20.5 to 23.5
Nitrogen (N), % 0
0.090 to 0.15
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 4.0 to 5.5
0
Zinc (Zn), % 1.0 to 4.0
0
Residuals, % 0 to 0.4
0