MakeItFrom.com
Menu (ESC)

C97800 Nickel Silver vs. EN 1.0225 Steel

C97800 nickel silver belongs to the copper alloys classification, while EN 1.0225 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C97800 nickel silver and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 10
6.7 to 24
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 48
73
Tensile Strength: Ultimate (UTS), MPa 370
440 to 500
Tensile Strength: Yield (Proof), MPa 170
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1140
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 25
52
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 40
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 5.1
1.4
Embodied Energy, MJ/kg 76
18
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 120
140 to 390
Stiffness to Weight: Axial, points 8.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
16 to 18
Strength to Weight: Bending, points 13
16 to 18
Thermal Diffusivity, mm2/s 7.3
14
Thermal Shock Resistance, points 13
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.21
Copper (Cu), % 64 to 67
0
Iron (Fe), % 0 to 1.5
98 to 100
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 1.4
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 0.35
Sulfur (S), % 0 to 0.080
0 to 0.045
Tin (Sn), % 4.0 to 5.5
0
Zinc (Zn), % 1.0 to 4.0
0
Residuals, % 0 to 0.4
0