MakeItFrom.com
Menu (ESC)

C97800 Nickel Silver vs. S13800 Stainless Steel

C97800 nickel silver belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C97800 nickel silver and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 10
11 to 18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 48
77
Tensile Strength: Ultimate (UTS), MPa 370
980 to 1730
Tensile Strength: Yield (Proof), MPa 170
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 230
810
Melting Completion (Liquidus), °C 1180
1450
Melting Onset (Solidus), °C 1140
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 25
16
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 40
15
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 5.1
3.4
Embodied Energy, MJ/kg 76
46
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1090 to 5490
Stiffness to Weight: Axial, points 8.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
35 to 61
Strength to Weight: Bending, points 13
28 to 41
Thermal Diffusivity, mm2/s 7.3
4.3
Thermal Shock Resistance, points 13
33 to 58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0.9 to 1.4
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 64 to 67
0
Iron (Fe), % 0 to 1.5
73.6 to 77.3
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 24 to 27
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.050
0 to 0.010
Silicon (Si), % 0 to 0.15
0 to 0.1
Sulfur (S), % 0 to 0.080
0 to 0.0080
Tin (Sn), % 4.0 to 5.5
0
Zinc (Zn), % 1.0 to 4.0
0
Residuals, % 0 to 0.4
0