MakeItFrom.com
Menu (ESC)

C99300 Copper vs. 2030 Aluminum

C99300 copper belongs to the copper alloys classification, while 2030 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C99300 copper and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 2.0
5.6 to 8.0
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 46
26
Tensile Strength: Ultimate (UTS), MPa 660
370 to 420
Tensile Strength: Yield (Proof), MPa 380
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 240
390
Maximum Temperature: Mechanical, °C 250
190
Melting Completion (Liquidus), °C 1080
640
Melting Onset (Solidus), °C 1070
510
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 43
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
99

Otherwise Unclassified Properties

Base Metal Price, % relative 35
10
Density, g/cm3 8.2
3.1
Embodied Carbon, kg CO2/kg material 4.5
8.0
Embodied Energy, MJ/kg 70
150
Embodied Water, L/kg 400
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 590
390 to 530
Stiffness to Weight: Axial, points 8.3
13
Stiffness to Weight: Bending, points 20
45
Strength to Weight: Axial, points 22
33 to 38
Strength to Weight: Bending, points 20
37 to 40
Thermal Diffusivity, mm2/s 12
50
Thermal Shock Resistance, points 22
16 to 19

Alloy Composition

Aluminum (Al), % 10.7 to 11.5
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 1.0 to 2.0
0
Copper (Cu), % 68.6 to 74.4
3.3 to 4.5
Iron (Fe), % 0.4 to 1.0
0 to 0.7
Lead (Pb), % 0 to 0.020
0.8 to 1.5
Magnesium (Mg), % 0
0.5 to 1.3
Manganese (Mn), % 0
0.2 to 1.0
Nickel (Ni), % 13.5 to 16.5
0
Silicon (Si), % 0 to 0.020
0 to 0.8
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3