MakeItFrom.com
Menu (ESC)

C99300 Copper vs. N07716 Nickel

C99300 copper belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C99300 copper and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
78
Tensile Strength: Ultimate (UTS), MPa 660
860
Tensile Strength: Yield (Proof), MPa 380
350

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 250
980
Melting Completion (Liquidus), °C 1080
1480
Melting Onset (Solidus), °C 1070
1430
Specific Heat Capacity, J/kg-K 450
440
Thermal Conductivity, W/m-K 43
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
75
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 4.5
13
Embodied Energy, MJ/kg 70
190
Embodied Water, L/kg 400
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
240
Resilience: Unit (Modulus of Resilience), kJ/m3 590
300
Stiffness to Weight: Axial, points 8.3
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 22
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 12
2.8
Thermal Shock Resistance, points 22
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10.7 to 11.5
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 1.0 to 2.0
0
Copper (Cu), % 68.6 to 74.4
0
Iron (Fe), % 0.4 to 1.0
0 to 11.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 13.5 to 16.5
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.020
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0
1.0 to 1.6
Residuals, % 0 to 0.3
0