MakeItFrom.com
Menu (ESC)

C99500 Copper vs. ASTM A369 Grade FP12

C99500 copper belongs to the copper alloys classification, while ASTM A369 grade FP12 belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is ASTM A369 grade FP12.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 540
470
Tensile Strength: Yield (Proof), MPa 310
250

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 210
430
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.6
Embodied Energy, MJ/kg 47
21
Embodied Water, L/kg 300
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
81
Resilience: Unit (Modulus of Resilience), kJ/m3 410
160
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 17
17
Thermal Shock Resistance, points 19
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
0.8 to 1.3
Copper (Cu), % 82.5 to 92
0
Iron (Fe), % 3.0 to 5.0
96.8 to 98.4
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.61
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 3.5 to 5.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 2.0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0