MakeItFrom.com
Menu (ESC)

C99500 Copper vs. C15500 Copper

Both C99500 copper and C15500 copper are copper alloys. They have 87% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 13
3.0 to 37
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
43
Tensile Strength: Ultimate (UTS), MPa 540
280 to 550
Tensile Strength: Yield (Proof), MPa 310
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 240
210
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 1090
1080
Melting Onset (Solidus), °C 1040
1080
Specific Heat Capacity, J/kg-K 400
390
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
90
Electrical Conductivity: Equal Weight (Specific), % IACS 10
91

Otherwise Unclassified Properties

Base Metal Price, % relative 30
33
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 47
42
Embodied Water, L/kg 300
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 410
72 to 1210
Stiffness to Weight: Axial, points 7.7
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 17
8.6 to 17
Strength to Weight: Bending, points 17
11 to 17
Thermal Shock Resistance, points 19
9.8 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 2.0
0
Copper (Cu), % 82.5 to 92
99.75 to 99.853
Iron (Fe), % 3.0 to 5.0
0
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0
0.080 to 0.13
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 5.5
0
Phosphorus (P), % 0
0.040 to 0.080
Silicon (Si), % 0.5 to 2.0
0
Silver (Ag), % 0
0.027 to 0.1
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0 to 0.2