MakeItFrom.com
Menu (ESC)

C99500 Copper vs. C66900 Brass

Both C99500 copper and C66900 brass are copper alloys. They have 65% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is C66900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 13
1.1 to 26
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 45
45
Tensile Strength: Ultimate (UTS), MPa 540
460 to 770
Tensile Strength: Yield (Proof), MPa 310
330 to 760

Thermal Properties

Latent Heat of Fusion, J/g 240
190
Maximum Temperature: Mechanical, °C 210
150
Melting Completion (Liquidus), °C 1090
860
Melting Onset (Solidus), °C 1040
850
Specific Heat Capacity, J/kg-K 400
400
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 47
46
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
4.6 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 410
460 to 2450
Stiffness to Weight: Axial, points 7.7
8.1
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 17
15 to 26
Strength to Weight: Bending, points 17
16 to 23
Thermal Shock Resistance, points 19
14 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 2.0
0
Copper (Cu), % 82.5 to 92
62.5 to 64.5
Iron (Fe), % 3.0 to 5.0
0 to 0.25
Lead (Pb), % 0 to 0.25
0 to 0.050
Manganese (Mn), % 0 to 0.5
11.5 to 12.5
Nickel (Ni), % 3.5 to 5.5
0
Silicon (Si), % 0.5 to 2.0
0
Zinc (Zn), % 0.5 to 2.0
22.5 to 26
Residuals, % 0 to 0.3
0 to 0.2