MakeItFrom.com
Menu (ESC)

C99500 Copper vs. C84400 Valve Metal

Both C99500 copper and C84400 valve metal are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 82% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 13
19
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
39
Tensile Strength: Ultimate (UTS), MPa 540
230
Tensile Strength: Yield (Proof), MPa 310
110

Thermal Properties

Latent Heat of Fusion, J/g 240
180
Maximum Temperature: Mechanical, °C 210
160
Melting Completion (Liquidus), °C 1090
1000
Melting Onset (Solidus), °C 1040
840
Specific Heat Capacity, J/kg-K 400
370
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
16
Electrical Conductivity: Equal Weight (Specific), % IACS 10
17

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 47
46
Embodied Water, L/kg 300
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
36
Resilience: Unit (Modulus of Resilience), kJ/m3 410
58
Stiffness to Weight: Axial, points 7.7
6.6
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 17
7.2
Strength to Weight: Bending, points 17
9.4
Thermal Shock Resistance, points 19
8.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 2.0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 82.5 to 92
78 to 82
Iron (Fe), % 3.0 to 5.0
0 to 0.4
Lead (Pb), % 0 to 0.25
6.0 to 8.0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0.5 to 2.0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Zinc (Zn), % 0.5 to 2.0
7.0 to 10
Residuals, % 0 to 0.3
0 to 0.7