MakeItFrom.com
Menu (ESC)

C99500 Copper vs. S44800 Stainless Steel

C99500 copper belongs to the copper alloys classification, while S44800 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C99500 copper and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 13
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 45
82
Tensile Strength: Ultimate (UTS), MPa 540
590
Tensile Strength: Yield (Proof), MPa 310
450

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
19
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.8
Embodied Energy, MJ/kg 47
52
Embodied Water, L/kg 300
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
120
Resilience: Unit (Modulus of Resilience), kJ/m3 410
480
Stiffness to Weight: Axial, points 7.7
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
20
Thermal Shock Resistance, points 19
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 82.5 to 92
0 to 0.15
Iron (Fe), % 3.0 to 5.0
62.6 to 66.5
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 3.5 to 5.5
2.0 to 2.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 2.0
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0.5 to 2.0
0
Residuals, % 0 to 0.3
0