MakeItFrom.com
Menu (ESC)

C99600 Bronze vs. EN 1.0234 Steel

C99600 bronze belongs to the copper alloys classification, while EN 1.0234 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C99600 bronze and the bottom bar is EN 1.0234 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 150
190
Elongation at Break, % 27 to 34
12 to 29
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 56
73
Tensile Strength: Ultimate (UTS), MPa 560
350 to 480
Tensile Strength: Yield (Proof), MPa 250 to 300
220 to 410

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 22
1.8
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 51
18
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 150
36 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 310
130 to 440
Stiffness to Weight: Axial, points 10
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 19
12 to 17
Strength to Weight: Bending, points 19
14 to 17
Thermal Shock Resistance, points 14
11 to 15

Alloy Composition

Aluminum (Al), % 1.0 to 2.8
0.020 to 0.060
Carbon (C), % 0 to 0.050
0.13 to 0.17
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 50.8 to 60
0
Iron (Fe), % 0 to 0.2
99.02 to 99.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 39 to 45
0.35 to 0.6
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.3
0