MakeItFrom.com
Menu (ESC)

C99700 Brass vs. EN 1.4542 Stainless Steel

C99700 brass belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C99700 brass and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 25
5.7 to 20
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 380
880 to 1470
Tensile Strength: Yield (Proof), MPa 170
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 160
860
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 880
1380
Specific Heat Capacity, J/kg-K 410
470
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 25
13
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.7
Embodied Energy, MJ/kg 53
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
880 to 4360
Stiffness to Weight: Axial, points 8.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
31 to 52
Strength to Weight: Bending, points 14
26 to 37
Thermal Shock Resistance, points 11
29 to 49

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 3.0
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 54 to 65.5
3.0 to 5.0
Iron (Fe), % 0 to 1.0
69.6 to 79
Lead (Pb), % 0 to 2.0
0
Manganese (Mn), % 11 to 15
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 4.0 to 6.0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19 to 25
0
Residuals, % 0 to 0.3
0