MakeItFrom.com
Menu (ESC)

C99700 Brass vs. Grade 27 Titanium

C99700 brass belongs to the copper alloys classification, while grade 27 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C99700 brass and the bottom bar is grade 27 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 25
27
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 46
41
Tensile Strength: Ultimate (UTS), MPa 380
270
Tensile Strength: Yield (Proof), MPa 170
230

Thermal Properties

Latent Heat of Fusion, J/g 200
420
Maximum Temperature: Mechanical, °C 160
320
Melting Completion (Liquidus), °C 900
1660
Melting Onset (Solidus), °C 880
1610
Specific Heat Capacity, J/kg-K 410
540
Thermal Expansion, µm/m-K 20
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 25
37
Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 3.3
33
Embodied Energy, MJ/kg 53
530
Embodied Water, L/kg 320
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
70
Resilience: Unit (Modulus of Resilience), kJ/m3 120
240
Stiffness to Weight: Axial, points 8.3
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 13
17
Strength to Weight: Bending, points 14
21
Thermal Shock Resistance, points 11
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 3.0
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 54 to 65.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0 to 0.2
Lead (Pb), % 0 to 2.0
0
Manganese (Mn), % 11 to 15
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Ruthenium (Ru), % 0
0.080 to 0.14
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
99 to 99.92
Zinc (Zn), % 19 to 25
0
Residuals, % 0 to 0.3
0 to 0.4