MakeItFrom.com
Menu (ESC)

C99700 Brass vs. Type 4 Magnetic Alloy

C99700 brass belongs to the copper alloys classification, while Type 4 magnetic alloy belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C99700 brass and the bottom bar is Type 4 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 25
2.0 to 40
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 380
620 to 1100
Tensile Strength: Yield (Proof), MPa 170
270 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 880
1370
Specific Heat Capacity, J/kg-K 410
440
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 25
60
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 3.3
10
Embodied Energy, MJ/kg 53
140
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
22 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 120
190 to 2840
Stiffness to Weight: Axial, points 8.3
12
Stiffness to Weight: Bending, points 20
22
Strength to Weight: Axial, points 13
19 to 35
Strength to Weight: Bending, points 14
18 to 27
Thermal Shock Resistance, points 11
21 to 37

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 3.0
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.3
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 54 to 65.5
0 to 0.3
Iron (Fe), % 0 to 1.0
9.5 to 17.5
Lead (Pb), % 0 to 2.0
0
Manganese (Mn), % 11 to 15
0 to 0.8
Molybdenum (Mo), % 0
3.5 to 6.0
Nickel (Ni), % 4.0 to 6.0
79 to 82
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19 to 25
0
Residuals, % 0 to 0.3
0