MakeItFrom.com
Menu (ESC)

C99700 Brass vs. S45503 Stainless Steel

C99700 brass belongs to the copper alloys classification, while S45503 stainless steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C99700 brass and the bottom bar is S45503 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 25
4.6 to 6.8
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 46
75
Tensile Strength: Ultimate (UTS), MPa 380
1610 to 1850
Tensile Strength: Yield (Proof), MPa 170
1430 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 160
760
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 410
470
Thermal Expansion, µm/m-K 20
11

Otherwise Unclassified Properties

Base Metal Price, % relative 25
15
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 3.3
3.4
Embodied Energy, MJ/kg 53
48
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
82 to 110
Stiffness to Weight: Axial, points 8.3
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13
57 to 65
Strength to Weight: Bending, points 14
39 to 43
Thermal Shock Resistance, points 11
56 to 64

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0.5 to 3.0
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 54 to 65.5
1.5 to 2.5
Iron (Fe), % 0 to 1.0
72.4 to 78.9
Lead (Pb), % 0 to 2.0
0
Manganese (Mn), % 11 to 15
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 4.0 to 6.0
7.5 to 9.5
Niobium (Nb), % 0
0.1 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
1.0 to 1.4
Zinc (Zn), % 19 to 25
0
Residuals, % 0 to 0.3
0