MakeItFrom.com
Menu (ESC)

K93500 Alloy vs. CC495K Bronze

K93500 alloy belongs to the iron alloys classification, while CC495K bronze belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is K93500 alloy and the bottom bar is CC495K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Poisson's Ratio 0.3
0.35
Shear Modulus, GPa 72
37
Tensile Strength: Ultimate (UTS), MPa 490 to 810
240

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Melting Completion (Liquidus), °C 1430
930
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 460
350
Thermal Expansion, µm/m-K 12
19

Otherwise Unclassified Properties

Base Metal Price, % relative 30
33
Density, g/cm3 8.2
9.0
Embodied Carbon, kg CO2/kg material 4.7
3.6
Embodied Energy, MJ/kg 65
58
Embodied Water, L/kg 130
400

Common Calculations

Stiffness to Weight: Axial, points 13
6.2
Stiffness to Weight: Bending, points 23
17
Strength to Weight: Axial, points 17 to 27
7.3
Strength to Weight: Bending, points 17 to 23
9.4
Thermal Shock Resistance, points 15 to 25
8.8

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Cobalt (Co), % 5.0
0
Copper (Cu), % 0
76 to 82
Iron (Fe), % 61.4 to 63
0 to 0.25
Lead (Pb), % 0
8.0 to 11
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0 to 0.2
Nickel (Ni), % 32
0 to 2.0
Phosphorus (P), % 0 to 0.015
0 to 0.1
Silicon (Si), % 0 to 0.25
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.1
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0
0 to 2.0
Zirconium (Zr), % 0 to 0.1
0