MakeItFrom.com
Menu (ESC)

K93603 Alloy vs. S32050 Stainless Steel

Both K93603 alloy and S32050 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is K93603 alloy and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 72
81
Tensile Strength: Ultimate (UTS), MPa 490 to 810
770

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 25
31
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 4.8
6.0
Embodied Energy, MJ/kg 66
81
Embodied Water, L/kg 120
210

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 17 to 27
27
Strength to Weight: Bending, points 17 to 24
23
Thermal Shock Resistance, points 15 to 25
17

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 0 to 0.25
22 to 24
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0
0 to 0.4
Iron (Fe), % 61.8 to 64
43.1 to 51.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.6
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 36
20 to 23
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zirconium (Zr), % 0 to 0.1
0