MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. 6262A Aluminum

N06025 nickel belongs to the nickel alloys classification, while 6262A aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06025 nickel and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 32
4.5 to 11
Fatigue Strength, MPa 220
94 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 500
190 to 240
Tensile Strength: Ultimate (UTS), MPa 760
310 to 410
Tensile Strength: Yield (Proof), MPa 310
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
580
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 11
170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 50
11
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 8.4
8.4
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 240
540 to 1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 26
31 to 41
Strength to Weight: Bending, points 22
36 to 44
Thermal Diffusivity, mm2/s 2.9
67
Thermal Shock Resistance, points 21
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.8 to 2.4
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0.040 to 0.14
Copper (Cu), % 0 to 0.1
0.15 to 0.4
Iron (Fe), % 8.0 to 11
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.15
0 to 0.15
Nickel (Ni), % 59.2 to 65.9
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 0.1 to 0.2
0 to 0.1
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15