MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. CC481K Bronze

N06025 nickel belongs to the nickel alloys classification, while CC481K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06025 nickel and the bottom bar is CC481K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 32
4.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 760
350
Tensile Strength: Yield (Proof), MPa 310
180

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1350
1000
Melting Onset (Solidus), °C 1300
880
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 11
64
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 50
35
Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 8.4
3.7
Embodied Energy, MJ/kg 120
60
Embodied Water, L/kg 290
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
13
Resilience: Unit (Modulus of Resilience), kJ/m3 240
150
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26
11
Strength to Weight: Bending, points 22
13
Thermal Diffusivity, mm2/s 2.9
20
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
87 to 89.5
Iron (Fe), % 8.0 to 11
0 to 0.1
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 0.15
0 to 0.050
Nickel (Ni), % 59.2 to 65.9
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 1.0
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
10 to 11.5
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.5