MakeItFrom.com
Menu (ESC)

N06035 Nickel vs. 242.0 Aluminum

N06035 nickel belongs to the nickel alloys classification, while 242.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06035 nickel and the bottom bar is 242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 34
0.5 to 1.5
Fatigue Strength, MPa 200
55 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 84
27
Shear Strength, MPa 440
150 to 240
Tensile Strength: Ultimate (UTS), MPa 660
180 to 290
Tensile Strength: Yield (Proof), MPa 270
120 to 220

Thermal Properties

Latent Heat of Fusion, J/g 340
390
Maximum Temperature: Mechanical, °C 1030
210
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
530
Specific Heat Capacity, J/kg-K 450
870
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 60
12
Density, g/cm3 8.4
3.1
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 330
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
1.3 to 3.4
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110 to 340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 22
16 to 26
Strength to Weight: Bending, points 20
23 to 32
Thermal Shock Resistance, points 17
8.0 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.4
88.4 to 93.6
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 32.3 to 34.3
0 to 0.25
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
3.5 to 4.5
Iron (Fe), % 0 to 2.0
0 to 1.0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 0.5
0 to 0.35
Molybdenum (Mo), % 7.6 to 9.0
0
Nickel (Ni), % 51.1 to 60.2
1.7 to 2.3
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0 to 0.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0 to 0.6
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15