MakeItFrom.com
Menu (ESC)

N06035 Nickel vs. ASTM Grade HH Steel

N06035 nickel belongs to the nickel alloys classification, while ASTM grade HH steel belongs to the iron alloys. They have 40% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N06035 nickel and the bottom bar is ASTM grade HH steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
11
Fatigue Strength, MPa 200
150
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 84
79
Tensile Strength: Ultimate (UTS), MPa 660
580
Tensile Strength: Yield (Proof), MPa 270
270

Thermal Properties

Latent Heat of Fusion, J/g 340
310
Maximum Temperature: Mechanical, °C 1030
1100
Melting Completion (Liquidus), °C 1440
1400
Melting Onset (Solidus), °C 1390
1360
Specific Heat Capacity, J/kg-K 450
480
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
20
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 10
3.7
Embodied Energy, MJ/kg 140
53
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
53
Resilience: Unit (Modulus of Resilience), kJ/m3 170
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
21
Strength to Weight: Bending, points 20
20
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.050
0.2 to 0.5
Chromium (Cr), % 32.3 to 34.3
24 to 28
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 2.0
52.9 to 64.8
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 7.6 to 9.0
0 to 0.5
Nickel (Ni), % 51.1 to 60.2
11 to 14
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.040
Tungsten (W), % 0 to 0.6
0
Vanadium (V), % 0 to 0.2
0