MakeItFrom.com
Menu (ESC)

N06035 Nickel vs. C42500 Brass

N06035 nickel belongs to the nickel alloys classification, while C42500 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N06035 nickel and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
2.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 84
42
Shear Strength, MPa 440
220 to 360
Tensile Strength: Ultimate (UTS), MPa 660
310 to 630
Tensile Strength: Yield (Proof), MPa 270
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 340
200
Maximum Temperature: Mechanical, °C 1030
180
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1390
1010
Specific Heat Capacity, J/kg-K 450
380
Thermal Expansion, µm/m-K 13
18

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.4
8.7
Embodied Carbon, kg CO2/kg material 10
2.8
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 330
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
64 to 1570
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
9.9 to 20
Strength to Weight: Bending, points 20
12 to 19
Thermal Shock Resistance, points 17
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 32.3 to 34.3
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
87 to 90
Iron (Fe), % 0 to 2.0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 7.6 to 9.0
0
Nickel (Ni), % 51.1 to 60.2
0
Phosphorus (P), % 0 to 0.030
0 to 0.35
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 3.0
Tungsten (W), % 0 to 0.6
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0
0 to 0.5